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Abstract

In this paper, we construct two-step tensor splitting iteration method for multi-linear systems.
Moreover, we present convergence analysis of this method. Finally, we give two numerical examples
to show that this new method is more efficient than the existing methods.
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1 Introduction

A high order tensor is a multi-way array whose entries are addressed via multiple indices in the
following form:

A = (ai1i2···im) , ai1i2···im ∈ R, ij = 1, 2, · · · , nj , j = 1, 2, · · · ,m,
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where R is the set of real number. If n1 = n2 = · · · = nm, then A is called a square tensor, otherwise
it is called a rectangular tensor.

Tensors are higher-order extensions of matrices, and they have wide applications in signal and
image processing, continuum physics, higher-order statistics, blind source separation, and especially
in exploratory multi-way data analysis ([1]). Hence, tensor analysis and computing have received
much attention of researchers in recent decade.

In this paper, we will discuss the following multi-linear system

Axm−1 = b, (1.1)

where A = (ai1i2···im) ∈ R[m,n] is an order m dimension n tensor, R[m,n] is the set of order m
dimension n tensor, b ∈ Rn is a dimension n vector, Rn is the set of real dimension n vector.

We know an essential problem in pure and applied mathematics is solving various classes of
equations. The rapid computation methods of multi-linear systems [2-4] are becoming more and
more significant in the field of science and engineering due to their wide applications(see [5-7]).
Many research works have been investigated in some literatures on fast solvers for the multi-linear
systems (1.1). Ding and Wei [8] proposed some classical iterative methods. Tensor splitting method
and its convergence results have been studied by Liu and Li et al. [9]. Some comparison results for
splitting iteration for solving multi-linear systems were investigated widely in [10]. Motivated by
[9,10], we propose a two-step tensor splitting iteration scheme for solving multi-linear systems.

The remainder of this paper is organized as follows. In Section 2, some basic and useful notations are
described simply. In Section 3, a two-step tensor splitting iteration scheme for solving multi-linear
systems is proposed. In Section 4, the convergence analysis of the two-step tensor splitting iteration
scheme is presented. In Section 5, two numerical examples are given to show the superiority of the
new iteration method.

2 Preliminaries

For an m-th order n-dimensional tensor and a vector x ∈ Rn, Axm−1 is a vector in Rn with entries

(
Axm−1)

i
=

n,n,··· ,n∑
i2,i3,··· ,im=1

aii2i3···imxi2xi3 · · ·xim , i = 1, 2, · · · , n.

For A ∈ R[2,n] and B ∈ R[k,n], the matrix-tensor product C = AB is defined by

cji2···ik =

n∑
j2=1

ajj2bj2i2···ik .

For a real m-th order n-dimensional tensor A and a scalar λ ∈ C, if there exists non-zero vector
x ∈ Cn such that

Axm−1 = λx[m−1],

where x[m−1] ∈ Cn with
(
x[m−1]

)
i
= xm−1

i , i = 1, 2, · · · , n, then λ is said to be an eigenvalue of

tensor A and x an eigenvector associated with eigenvalue λ. In particular, if x is real, then λ is also
real, and we say (λ, x) is an H-eigenpair of tensor A. The largest modulus of eigenvalue of tensor
A is called the spectral radius of tensor A and we denote it by ρ(A).

Definition 2.1. [11] Let A = (ai1i2···im) ∈ R[m,n]. A is said to be a Z-tensor if its off-diagonal
entries are all non-positive. A is said to be an M-tensor if there exists a nonnegative tensor B and
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a positive real number c ≥ ρ(B) such that A = cIm − B. If c > ρ(B), then A is said to be a strong
M-tensor, where Im is identity tensor with all diagonal elements be 1.

Definition 2.2. [12] Let A = (ai1i2···im) ∈ R[m,n], then the majorization matrix M(A) of A is the
n× n matrix with the entries

M(A)ij = aij···j , i, j = 1, 2, · · · , n.

Definition 2.3. [10] Let A = (ai1i2···im) ∈ R[m,n], if M(A) is nonsingular and A = M(A)Im, then
M(A)−1 is called the order-2 left-inverse of tensor A and A is called left-nonsingular, where Im is
identity tensor with all diagonal elements be 1.

Definition 2.4. [10] Let A, E ,F ∈ R[m,n], A = E − F is called a splitting of tensor A if E is left-
nonsingular, a regular splitting of tensor A if E is left-nonsingular with M(E)−1 ≥ 0 and F ≥ 0, a
weak regular splitting of tensor A if E is left-nonsingular with M(E)−1F ≥ 0, a convergent splitting
of tensor A if ρ(M(E)−1F) < 1.

3 Two-step Tensor Splitting Iteration Method

Consider two tensor splittings A = E1 − F1 = E2 − F2. Firstly, we describe briefly tensor splitting
iterative method for solving multi-linear systems

Axm−1 = b.

Algorithm 3.1. Tensor splitting iteration method
Step 1 Input a tensor A with splitting A = E1 − F1 and a vector b. Given a precision ε > 0 and
initial vector x0. Set k := 1;
Step 2 If ∥Axm−1

k − b∥2 < ε, then stop; otherwise, go to Step 3;
Step 3

xk+1 = (M(E1)
−1F1x

m−1
k +M(E1)

−1b)[
1

m−1
];

Step 4 Set k := k + 1, return to Step 2.

Where

∥Axm−1
k − b∥2 =

√
(Axm−1

k − b)T (Axm−1
k − b).

Let A = D − L − U , where D = DIm and L = LIm, D and −L are diagonal and strictly lower
triangular parts of M(A), respectively.

When E1 = 1
ω
(D− rL), F1 = 1

ω
[(1−ω)D+(ω− r)L)+ωU ], we can get AOR method. Furthermore

if ω = r, then we can get SOR method.

Based on Algorithm 3.1, we present two-step tensor splitting iteration method.

Algorithm 3.2. Two-step tensor splitting iteration method
Step 1 Input a tensor A with two splittings A = E1−F1 = E2−F2 and a vector b. Given a precision
ε > 0 and initial vector x0. Set k := 1;
Step 2 If ∥Axm−1

k − b∥2 < ε, then stop; otherwise, go to Step 3;
Step 3

xk+ 1
2
= (M(E1)

−1F1x
m−1
k +M(E1)

−1b)[
1

m−1
],

xk+1 = (M(E2)
−1F2x

m−1

k+ 1
2
+M(E2)

−1b)[
1

m−1
];

Step 4 Set k := k + 1, return to Step 2.
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Let C = M(E2)
−1F2, then

Cxm−1

k+ 1
2
= M(C)Imxm−1

k+ 1
2
= M(C)x[m−1]

k+ 1
2

.

From Step 3 of Algorithm 3.2, we know that

x
[m−1]

k+ 1
2

= M(E1)
−1F1x

m−1
k +M(E1)

−1b,

so

Cxm−1

k+ 1
2
= M(C)x[m−1]

k+ 1
2

= M(C)M(E1)
−1F1x

m−1
k +M(C)M(E1)

−1b,

xk+1 = (M(C)M(E1)
−1F1x

m−1
k +M(C)M(E1)

−1b+M(E2)
−1b)[

1
m−1

].

When

E1 =
1

ω
(D − rL),F1 =

1

ω
[(1− ω)D + (ω − r)L+ ωU ],

E2 =
1

ω
(D − rU),F2 =

1

ω
[(1− ω)D + (ω − r)U + ωL],

we can get two-step AOR (TAOR) method.

4 Convergence Analysis of Two-step Tensor Splitting
Iteration Method

Next we will present the proof of convergence of Algorithm 3.2.

Theorem 4.1. Let A = (ai1i2···im) ∈ R[m,n] and A = E1 − F1 = E2 − F2 be a weak regular
splitting and a regular splitting, respectively. If F1 ≥ F2,F2 ̸= 0, F1−M(F1)Im ≥ F2−M(F2)Im,
ρ(M(E1)

−1F1) < 1, then there exists a positive Perron vector x ∈ Rn such that

M(E2)
−1F2x

m−1 ≤ ρx[m−1],

where ρ = ρ(M(E1)
−1F1 +

1
n
S), n is a positive integer and S ∈ R[m,n]is a positive tensor.

Proof. Since ρ(M(E1)
−1F1) < 1, we know that there exists a positive integerN such that ρ(M(E1)

−1F1) ≤
ρ(M(E1)

−1F1 + 1
n
S) < 1 for n > N . From A = E1 − F1 is a weak regular splitting, we have

M(E1)
−1F1 ≥ 0. While S ∈ R[m,n]is a positive tensor, so M(E1)

−1F1 + 1
n
S is positive and

irreducible. By the strong Perron-Frobenius theorem [13], there exists a positive Perron vector
x ∈ Rn, such that (M(E1)

−1F1 +
1
n
S)xm−1 = ρx[m−1] for n > N , where ρ = ρ(M(E1)

−1F1 +
1
n
S).

Notice that ρx[m−1] = ρImxm−1, we get

ρImxm−1 − 1

n
Sxm−1 = M(E1)

−1F1x
m−1,

so

M(E1)(ρIm − 1

n
S)xm−1 = F1x

m−1,

From A = E1 −F1, we know that M(A) = M(E1)−M(F1), so

M(A)(ρIm − 1

n
S)xm−1 =(M(E1)−M(F1))(ρIm − 1

n
S)xm−1

=(M(E1)(ρIm − 1

n
S)xm−1 − (M(F1)(ρIm − 1

n
S)xm−1

=F1x
m−1 − (M(F1)(ρIm − 1

n
S)xm−1

=[F1 −M(F1)Im]xm−1 +M(F1)Imxm−1 − ρM(F1)Imxm−1 +
1

n
M(F1)Sxm−1

=[F1 −M(F1)Im]xm−1 + (1− ρ)M(F1)Imxm−1 +
1

n
M(F1)Sxm−1
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From A = E2 −F2, we know that M(A) = M(E2)−M(F2), so

M(A)(ρIm − 1

n
S)xm−1 = [M(E2)−M(F2)](ρIm − 1

n
S)xm−1.

From F1 ≥ F2 and Definition 2.2, we know that M(F1) ≥ M(F2). From F1 − M(F1)Im ≥
F2 −M(F2)Im, we get

[M(E2)−M(F2)](ρIm − 1

n
S)xm−1 =[F1 −M(F1)Im]xm−1 + (1− ρ)M(F1)Imxm−1 +

1

n
M(F1)Sxm−1

≥[F2 −M(F2)Im]xm−1 + (1− ρ)M(F2)Imxm−1 +
1

n
M(F2)Sxm−1

i.e.,

M(E2)(ρIm − 1

n
S)xm−1 −M(F2)(ρIm − 1

n
S)xm−1 ≥ F2x

m−1 −M(F2)(ρIm − 1

n
S)xm−1,

so

M(E2)(ρIm − 1

n
S)xm−1 ≥ F2x

m−1,

i.e.,

F2x
m−1 ≤ M(E2)(ρIm − 1

n
S)xm−1.

From A = E2 −F2 is a regular splitting, we know that M(E2)
−1 ≥ 0 and F2 ≥ 0, hence

M(E2)
−1F2x

m−1 ≤ (ρIm − 1

n
S)xm−1 ≤ ρImxm−1 = ρx[m−1].

Theorem 4.2. If all the conditions of Theorem 3.1 hold and C = M(E2)
−1F2 is left-nonsingular,

then
ρ(M(C)M(E1)

−1F1) ≤ [ρ(M(E1)
−1F1)]

2

and
ρ(M(C)M(E1)

−1F1) < 1.

Proof. From the proof of Theorem 4.1, we know that there exists a positive integer N and a positive
Perron vector x ∈ Rn, such that

(M(E1)
−1F1 +

1

n
S)xm−1 = ρx[m−1]

for n > N , where ρ = ρ(M(E1)
−1F1 +

1
n
S). So

M(C)(M(E1)
−1F1 +

1

n
S)xm−1 = ρM(C)x[m−1] = ρM(C)Imxm−1.

Since C = M(E2)
−1F2 is left-nonsingular, then M(C)Im = C, we get

M(C)(M(E1)
−1F1 +

1

n
S)xm−1 = ρM(C)Imxm−1 = ρCxm−1 = ρM(E2)

−1F2x
m−1.

From Theorem 4.1, we know that

M(E2)
−1F2x

m−1 ≤ ρx[m−1],

so

M(C)(M(E1)
−1F1 +

1

n
S)xm−1 = ρM(E2)

−1F2x
m−1 ≤ ρ2x[m−1].

52



Cheng et al.; JAMCS, 36(9): 48-55, 2021; Article no.JAMCS.76297

When n → ∞, we have

M(C)M(E1)
−1F1x

m−1 ≤ [ρ(M(E1)
−1F1)]

2x[m−1],

so

ρ(M(C)M(E1)
−1F1) ≤ [ρ(M(E1)

−1F1)]
2.

From ρ(M(E1)
−1F1) < 1, we get ρ(M(C)M(E1)

−1F1) < 1.

5 Examples

In this section, two numerical examples are given to show the effectiveness of two-step tensor
splitting iteration method.

All the numerical experiments have been carried out by MATLAB R2011b 7.1.3. Iterations are
terminated when the norm of the residual vector (denoted by ’RES’) RES = ∥Axm−1

k −b∥2 < 10−11.

Example 5.1. Consider the multi-linear systems with a strong M-tensor

A = 864.4895I3 − B,

where B ∈ R[3,5] is a nonnegative tensor with bi1i2i3 = | tan(i1 + i2 + i3)|.

Table 1. Numerical results for Example 5.1 when r = 2.3, ω = 0.99

method SOR AOR TAOR

IT 380 307 133
CPU 1.5005 1.0568 0.7945

Example 5.2. Consider the multi-linear systems with a strong M-tensor

A = 9I3 − B,

where B ∈ R[3,3] is a nonnegative tensor with bi1i2i3 = | sin(i1 + i2 + i3)|.

Table 2. Numerical results for Example 5.2 when r = 2.3, ω = 0.99

method SOR AOR TAOR

IT 51 39 23
CPU 0.2984 0.2325 0.2182

In Tables 1 and 2, the number of iteration steps (denoted by IT) and the elapsed CPU time in
seconds (denoted by CPU) are listed for SOR, AOR and TAOR methods when r = 2.3, ω = 0.99,
respectively. From the numerical results, we can see that TAOR method requires less iteration steps
and CPU time than SOR and AOR methods, so TAOR method is more efficient than SOR and
AOR methods.
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6 Conclusion

In this paper, we construct two-step tensor splitting iteration method for multi-linear systems and
present convergence analysis of this method. Finally, we give two numerical examples to show that
this new method is more efficient than the existing ones.
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