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Abstract

Aims/ objectives: We are interested in a hyperbolic phase field system of Cahn-Hilliard type,
parameterized by € for which the solution is a function defined on (0;7) x © . We show the
existence and uniqueness of the solutoin, existence of the global attractor for a hyperbolic phase
field system of Cahn-Hilliard type, with homogenous conditions Dirichlet on the boundary, this
system is governed by a regular potential, in a bounded and smooth domain. the hyperbolic phase
field system of Cahn-Hilliard type is based on a thermomecanical theory of deformable continu.
Note that the global attractor is the smallest compact set in the phase space, which is invariant
by the semigroup and attracts all bounded sets of initial data, as time goes to infinity. So the
global attractor allows to make description of asymptotic behaviour about dynamic system.
Study Design: Propagation study of waves.

Place and Duration of Study: Departement of mathematics (group of research called
G.R.A.F.E.D.P), Sciences Faculty and Technical of Marien NGOUABI University PO Box 69,
between October 2015 and July 2016.
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Methodology: To prove the existence of the global attractor to based of the classic methode
about the perturbed hyperbolic system, with initial conditions and homogenous conditions
Dirichlet on the boundary, we proceed by proving the dissipativity and regularity of the
semigroup associated to the system, and we then split the semigroup such that we have the
sum of two continuous operators, where the first tends uniformly to zero when the time goes to
infinity, and the second is regularizing.

Results: We show the existence of global attractor, about a hyperbolic phase field system of
Cahn-Hilliard type, governed by regular potential.

Conclusion: All the procedures explained in the methodology being demonstrated , we can
assert the existence of the smallest compact set of the phase space, invariant by the semigroup
and which attracts all the bounded sets of initial data from a some time.

Keywords: Cahn-Hilliard phase-field system; dissipativity; global attractor; dirichlet boundary
conditions.

2018 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction and Setting of the Problem

We recall that the global attractor A is the smallest (for the inclusion) compact set of the phase
space which is invariant by the flow (i.e. S(t)A = A; V¢ > 0) and attracts all bounded sets, of initial
data when time goes to infinity. The property of invariance satisfied by the global attractor makes
sure of its unicity (when the global attractor exists). It is the smallest closed set which verifies
the property of attraction; and it thus appears as a suitable object in view of the study of the
asymptotic behaviour of the system. In fact the global attractor is the smallest compact set of the
phase space which contains the solution of a dynamic system, when time goes to infinity.

The G. Caginalp phase-field system

% —ANPu—Af(u) = —Ad (1.1)
90 du
o A0 = -5 (1.2)

has been proposed in [1] as model phase transition processes such as melting-solidification processes
and have been studied, e.g.,[2],[3] and [4]; see also, e.g.,([5],[6]). In the above system, u is the order
parameter and 6 is the (relative ) temperature.

These Cahn-Hilliard phase-field system are known as the conserved phase-field system (see [7], [5],
[8], [9], [10] and [11]) based on type III heat conduction and with two temperatures (see [12],[13])
in which the authors have proved the existence and the uniqueness of the solution, the existence of
global attractor and of exponential attractors with singular or regular potential.

In [14], Mangoubi and al. studied the following Cahn-Hilliard phase-field system

%u  du 9 _ Oa
(-A)Sy + S+ At Afw) = AT (1.3)
o o oo Ou

where € > 0, u is the order parameter and « is the (relative ) temperature, the authors have proved
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the existence and the uniqueness of solution with Dirichlet boundary conditions and a regular
potential. The system (1.3)-(1.4) is not dissipative, then to circumvent this difficulty we are forced
to add another perturbed term on the equation Cahn-Hilliard (1.3) in order to prove the dissipativity
of the below system.

In this paper, we consider the following Cahn-Hilliard perturbed phase-fiel system

2
(—A) (%+%)+%+A%-Af(u):— %‘: in RYxQ (1.5)
&—A@—A@—A U RYxQ (1.6)
ot2 o2 ot ST T M '
U|F:OZ‘[‘ :AU‘FZO (17)
1s] 0
U|t=0 = U0, %h:o = U170é|t:0 = o, a*;y\tzo = Qai, (1‘8)

as one perturbed Cahn-Hilliard phase-field system (1.1)-(1.2) with € > 0.  is a bounded and
regular domain of R®™ n =2 or 3 and f is a nonlinear regular potential.

The hyperbolic system has been extensively studied for Dirichlet boundary conditions and regular
or singular potential (see [15], [16], [17]). Whose certain have to end at the existence of global
attractor and at the existence of exponential attractors ( see [18], [19] and [20]).

In this paper we prove the existence and the uniqueness of solutions and the existence of global
attractor of the problem (1.5)-(1.8). We consider here only one type boundary condition, namely,
Dirichlet. Furthermore we consider the regular potential f(s) = s® — s which satisfies the following
properties

f is of class C?; f(0) = 0, (1.9)
—co < f'(s), co>0, Vs€eER, (1.10)
—a<F(s)< f(s)s+c2, c1, c2>0, VseR (1.11)

with

F(s) = / " fryar,

2 Notations

We denote by ||.|| the usual L2-norm ( with associated product scalar (.,.)) and ||.||-1 = ||(—A)7T1 A
where —A denotes the minus Laplace operator with Dirichlet boundary conditions. More generally,
||.]|x denote the norm of Banach space X and ¢, is the constant of Poincare.

Throughout this paper, the same letters C1, C> and C3 denote (generally positive) constants which
may change from line to line, or even in the same line. In what follows, the Poincare, Holder and
Young inequality are extensively used, without further referring to them.
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3 A Priory Estimates

We multiply (1.5) by (—A)_l% and integrate over Q. We have

?u Ou ou Ou 10u Ou ou Ou\ [(Oa Ou
(Wa) + (EE) + (( AT 8t) *( A“’a) + (f<“)’a> = (aa)

which implies

da Ou
G (5P vt 2 [ Fae) 2 GrE e 2GR =2 (5. 50). @)

Now multiply (1.6) by %—C; and integrate over Q. We obtain
%o da o da da Oa Oa Oou Oa
(W’ a) + (‘Aw’a> + (‘AE’ a) + ( Aa, a) (aa)
which yields

d ou Oa
& (150 19 o+ 19l ) + 2w i = =2 (5.5 (32

Summing (3.1) and (3.2), we find

dE Ox
B a2+ 2122, 21w 22 =0, (33
where
B =GP+ I vl +2 [ P+ 150 + IV + v al (3.4
and satisfies
Oa
Bz (vl +d 5+l val + W5 ) + ¢, >0 (35)

We conclude that u, o € L™ (RT; Hy (),

%12 € L (RT;L*(Q)) nL? (0,T; L*(Q))
and
%—? € L™ (R, Hy(Q)) N L? (0,T; Hy(Q)) VT > 0.
Multiply (1.6) by 87:2 and integrate over 2. We get
2120 42w 224 Ly —2(%%) ~2(Va, vig
< 929 at2 IIH || +2Val V22 BT o
HV || +|I o2 17 +||Vat2 [ H || + | Vall*.



Dieu et al.; JAMCS, 26(6): 1-20, 2018; Article no.JAMCS.39176

Then 2 at2 € L*(0,T; H3(Q)). In the following section, we have three main results: existence and
uniqueness theorems and the existence of solution with more regularity.

4 Existence and Uniqueness of Solutions

Theorem 4.1. (Exzistence) We assume that (uo,u1, a0, 0n) € Hg () x L*(Q) x (Hg (Q))2 Then, the
system  (1.5)— (1.8) possesses at least one solution (u, ) such that u,a € L™ (RT; Hy(Q)), 2% €
L> (RT; L*(Q)) N L? (0 T;L*(Q)), 22 € L™ (RT; Hy () N

L? (0,75 H5(Q)) and &8 € L* (0, T; HO( ), VT > 0.

The proof is based on priory estimates obtained in the previous section and on a standard Galerkin
scheme.

Theorem 4.2. (Uniqueness) Let the assumptions of Theorem 4.1 hold. Then, the system (1.5) —
(1.8) possesses a unique solution (u,a) such that u,o0 € L (RT; H(Q)) ,

Qe L™ (R L7(Q) NL?(0,T; L7()), 92 € L™ (RT; H§(Q)) N L* (0,T; Hy () and

W € L?(0,T;Hg (), VT > 0.

Proof. Let (u(®, a(l)) and (u®, a<2)) be two solutions of the system (1.5) — (1.8) with initial data
(uém,u(ll),aél),agl)) and (uéQ),u< ) ozéQ), <12)) € H}(Q) x L*(Q) x (Hé(Q))Q7 respectively. We set

uw=u —u? and a = o — a?, then (u, @) is one solution of the following system

82 8U 6’1,L 2 1 2 80(
e(—A) (ﬁ—i_E)—FE—FA u—A(f(u)—f(u ))__AE (4.1)
0 0 Oa _Ou
ulan = Aulsa = ajag =0
0
U= Ozuo—uél) uE)Q), u|t O:ul—uﬁ)—u(f)
7]
Q= o—ao—aél) aéz), a|t 02041204(1) af).
. 1 ou . .
We multiply (4.1) by (—A) 5 and integrate over 2. We obtain
Wy _ prp®y 24 o (0o Ou
o (50 1wl ) el P2l Gz e (£ - ), ) <2 (52.58). )
o OJa . .
Multiplying (4.2) by e and integrating over €2, we get
d Oa o Oa o 2 ou Oa
(152419 G+ Ival?) + 219 G = 2 (5.5 (1.4
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Summing (4.3) and (4.4)7 then we obtain

dE, Ou da Wy _ g2y Ou
o e H || +2H H 1+2||v 5t 212 = <f(u ) = W), 5 (4.5)

where
Ez—ﬁl\ || + v ul? +H || +|IV H + | v ol

We know that
F@M) = fu®) =i(t)u

with
1
— / f’(u(z) + s(um — u(2)))ds
0
1
< 3/ (su™ + (1 — s)u'?)?ds,
0
1
<3/ (u] + [u®| +1)%ds
0
1
< c/ (u®™ ] + [u® > 4+ 1)ds
0
<O + P + 1),
Then

ou ou
My _ (2) —
[0 = @) Grde = [ 101G las
ou

< (1))2 (2))2

< [ (WP + P 1) full 5
ou

<C (Ju®1o + 1@ 70 +1) lullzol 51

ou
<O (I s + 1@ 3 + 1) llullen 1 51

ou
<ol 151)

0
<& (Jull + 15 1) K >0 (46)
Inserting (4.6) into (4.5), we have
dEb
W o) 242 420 2492, + 20w 2212 < K(Ivul? + el 2412).

Applying Gronwalls lemma, we obtain V ¢t € [0; T

Bo(t)+2 [ (G I + 15 DI+ V55 (DI )dr < Ea0)e”. (47)

We deduce the continuous dependence of the solution relative to the initial conditions, hence the
uniqueness of the solution.

The existence and the uniqueness of the solution of problem (1.5)-(1.8) being proved in a larger
space, we will seek the existence of solution with more regularity. (I
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Theorem 4.3. We assume that (uo,u1, a0, 01) € (H*(Q) N Hy(Q)) x Hg () x
(H*() N H&(Q))2 Then the system (1.5)-(1.8) possesses a unique solution (u,a)

such that u,a € L (0, T; H*(Q) N Hy(Q)), 2% e L™ (o T3 Hy(Q)) N L? (0,T; H5 (),
92 ¢ L™ (0, T; H*(Q) N H(Q)) N L? (0, T; H*(Q)), € L*(0,T; H*(Q) N Hy (Q))

and 2% € L* (0,T; L*(Q)), VT > 0.

Bz2

Proof. Owing to the theorems (4.1) and (4.2), the system (1.5) — (1.8) possesses a unique solution
(u, @) such that u, € L™ (R+; H&(Q)), %—: € L:O (R+; L2(Q)) nL? (O,T; LQ(Q)) ,

%o e L™ (RT; Hg(Q)) N L2 (0,T; Hy()) and &5 € L (0,T; Hy (),

vT > 0.

Multiply (1.5) by % and integrate over 2. We have

G (VG 4180 ) + 2w G + 21501 =2 (Vo 95 ) ~2 (V.G ) @)

C 0 . .
Multiplying (1.6) by A% and integrating over 2, we get

ot
& (05418501 + haal) + 21252 = -2 (v52.95E). o)
Summing (4.8) and (4.9), we obtain
B sad v+ 215 42050 = 2 (F@vevay). @)

where
E3—6||V*H + [ Aul® +HV || +||A H +[|Aa)®.

Thanks to use f'(s) and the fact that u € L™ (R4; Hg(Q)), we find the following estimate

/|f (@)Vullv e = /\:w IVl P

N

3 +1)\Vu||VE|dx

N

C (lullzs +1) HVUHLGHV ||

N

C (Ilullz +1) IIAUHHV H

/A

'LL
A -
claulv e,

N

K<\|Au||2+6||v%\|2), K >0. (4.11)

Inserting (4.11) into (4.10) and applying the Gronwall’s lemma, we deduce that

u,a € L™ (0,T; H*(Q) N Hy(Q)), 2% € L™ (0,T; H5(R2)) N L* (0,T; Hy(Q)) and
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92 ¢ L(0,T; H*(Q) N Hy () N L*(0, T; H*(Q) N Hy(Q)), ¥ T > 0.

2
Multiplying (1.5) by (7A),187u and integrating over (2, we obtain

ot?
d Ou,.  d 0u, da O%u 0*u 0%u
% =2 &2, 2Y%) 49 2 au
L LT ((%,W) 2(au 8t2> (. 5 ).
<2 2||Au
190 T )+ 2lau 2
+2/Q\f(u)|\w|dx (4.12)
Thanks to use f(s) and the fact that u € H*(Q) C L°(Q), we get
< oo
[ S < (e~ 1) [ ol
SC/ |u|\ﬁ|d
< Ol 22 o “)
< olvull 24
9?u
< 24 .
< olvul? + 1242
Inserting the above estimate into (4.12), we obtain
(G0 41501 ) + el S+ < USRI + 18wl + [9ulP), €1 >
R . 8%u 2 2
which implies that %7 € L*(0,T; L*(92)).
Multiplying (1.6) by Aa -+ and integrating over (3, we find
v e 2al ey Lyadeye < o2y aZey | g HHAW I
< 2[Aa)? +*||Aat2 I® +*||Aat2 I® +2\| ||
||A H +2”V8t2 I® +||A3t2 I® 2H H +2[Aa?
that implies 2 atz € L?(0,T; H*(Q) N H()). O

5 Dissipativity and Regularity

In this section, we have two main results, the dissipativity and the regularity of the semi-group
{S<(t) }+>0 associated to the system (1.5) — (1.8).
We have thanks to the Theorems (4.2) and (4.3) two following respective phase spaces

Hg(Q) x L*(2) x (Ho(2))?,

<I>2:(H2( ) N Hy () x Ho () x (H*(Q) N Ho ()%,
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and the two following energy norms

ou da
R e A N A

We then define the continuous semi-group

Su(E) : D —> Dy (w0, 1, 0, 1) —> (u(t), agf),a(t), a‘gi”) , (5.1)

where k = 1,2 and (u, @) is the unique solution of the system (1.5) — (1.8) with the initial conditions
(U(), ui, o, (11) c Oy

Theorem 5.1. If we assume that (u,a) is the solution of the problem (1.5) — (1.8) with initial
data that (uo,u1, a0, @1) € ¢1. Then, the solution (u, «) satisfies the following estimate

I (s, G000, 50 ) oy + [ 12522 e ar

< Q(”uOHHlv”ul”vHa()”Hla||0‘1HH1)6 g (5.2)
where 8 and C are the positive constants and Q is the monotonic function.

Proof. We multiply (1.5) by (—A)~'u and integrate over . We have

(%+% )+(( a o )+(—Au,u)+/ﬂf(u)udm:(%j‘,u),

Using (1.11) we have

d O
—E4+2||Vu\|2+/ F(u)dl:S/Czd:c—FQ + 2¢ || H
dt Q a at’

which implies

d
GBIVl +2 [ Pl <C+ IV I+ 2 G (5.3)
where 5
By = (26(8—u,u) + lul®y + e|\u||2> :
t
We multiply (1.6) by «, and integrate over €. We have
FoateY Fate! Oa ou
-— -A—— —-A— AY =—|=
(5 o) = (258 )+ (8500) +comer == (Ge).
which implies
d
2B +2[[Val* < || H 1HV04||+2H H +2HV ||
|| H 1+ [IVal® +2cpHV || +2||V H
d
2 B +1val? <1, + OV P, (54)
where 5 o
o (& 2
E 2 2(V— . .
5= (250 + 2952 va) + [7al) 5.5
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Summing (3.3), y1(5.3) and ~2(5.4) where v1 and 2 > 0 are such that

1-ym > 0
2—v > 0,
L—yico —7C > 0

we get

d 0
B+ VUl + Col G + Col G 21 + CullVal® + 23 | Pla)da + oIV S < €. (5.

where
Es = E1 +71Es+ 7 Es.

Moreover, for sufficiently small values of v and 2 > 0, there exists C' > 0 such that
1 ou 9 2 oo’ 2 2
ell 5 OIF +IVu@I” + IV 2 O + [IVa@®)l” | < Eo(?)
ou 2 2 Oa 2 2
C (ell5; OIF + IVu@I” + 1V o O + V@)™ ) - (5.7)

Thanks to (5.7), (5.6) can be written as

d
th6+6E6+CII Y12, <0, (5.8)

where 8 and C are the positive constants. Applying Gronwall’s lemma, thanks to estimate (5.7)
we have

ou O 2 Lou(t) 2 _prior
(). G 0.0, GO, +C [ 1ZD e
< Q ([woll s lual, laollsr, llaa | ) e + C, (5.9)
where 8 and C are the positive constants and Q is the monotonic function. O

Corollary 5.2. The semi-group of operators S.(¢),¢ > 0 associated to the problem (1.5) — (1.8)
is dissipative in ®1, it possesses a bounded absorbing set in ®;.

This corollary is a straightforward consequence of theorem (5.1).

We denote Br,(€) = {(u, 2%, a, at) € @1/ (u, 2%, o, 22) ||lo, < Ro} where Ry is large enough, a
bounded absorbing set of the semi-group S:(t) in ®1.

Theorem 5.3. Assume that (u, «) the solution of the problem (1.5) — (1.8) with initial
data (uo,u1, a0, @1,) € Bry(€) N ®2. Then, the solution (u, a) verifies the following estimate

ou - .
I(u(®), Z7 (0), @ ()7 at NG, + / ”7 Y2 1e P gr
< Q(||u0||H27HulHH17HQOHHQ,”Oz]_HHz)e ﬁt+o7 (510)

where B and C are the positive constants and @ is the monotonic function.

10
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Proof. Multiply (1.5) by % and integrate over ). We have

da _0du ou
G (TGP + 180 ) + 2V e + 2150 =2 (V5,95 ) 2 (-arw), 5 )
(5.11)
C da . .
Multiplying (1.6) by —Aa and integrating over 2, we get
da _0u
& (95418501 + haal) + 21852 = -2 (v52. v5H). 512
Now summing (5.11) and (5.12). we obtain
d ou
B+ 2V 4 A G + 218581 = -2 (-arw. 5 ). (513)
We know that
ou ou
(-ar@.5) = (revevsy) (5.14)
— [ 1F @IVl v 2 da
[ £ @ivaiv g
g/(u2+1)|Vu||V%|dw
Q t
ou
< (fullzs + DIVull eIV 5 |
ou
< (fullfn + 1)HAUIIIIV§H
CIIAHIIHV H
< Cl| Al +*|IV H (5.15)
Inserting (5.15) into (5.13) we obtain
d
R HV H +2|| H +2HA*|| < Ol Aul?, (5.16)

dt

where
E7—6||V H + [|Aul® +HV || +||A H +[|Aa)®.

Multiply (1.5) by u and integrate over 2. we obtain
u  du ou 2 Hax
€ (( A) Gz + 5p)hu ) + (E’“) + (A%u,u) + (A f(u),u) = (_AE’“>

which implies

c ((—A)(% + %;),u) T (‘?;t‘ ) 1 Aul? + (/W) Vu, Va) = (%j,_au> .

(5.17)

11
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d 0 0
2 Bs + 20| Aul® < 26| VP + 1Al + 12 + col |Vl
d
4 B+ 18wl < 26|V OH P + 2619 O | + o[ Vul® (5.18)

where
Vu) + €| V|| * + [[u]*.

We multiply (1.6) by —A« and integrate over Q. We find

d Oa Oa 1,0u o
G (Vomva) + g (850 8a) + 1Al + 18al < 51517 + Flaal®
F1adeye el
d O Oa 2
& (20950 9y + 2858 8a) + 18l ) + 12l < |54 + 21052

+ 2||V || (5.19)

Now summing (5.6), v3(5.16), 4(5.18) and 75(5.19) where v3, v4 and 75 > 0 are such that

Ci—yaco0> 0
Co+2y3 -7 > 0
Cs — 2’Y4Cp — 2"}/5 > 0,
Y3 —7vs > 0
Y3—2v4 > 0
we find
d
th9+cl||Au|\ ralv 2y oy 2 +c4||A %2 4 CollAal?
+ Gl V2P + Crl| Yl +cs/F o+ Col 222, < €, (5.20)
where

Oa
F9 = FE¢ +v3FE7 +v4FEs + 75 (2(V§,

Va) + 2(A%‘;,Aa) + ||Aa|\2> .

For sufficiently small values of 74 and 75 > 0, there exists C' > 0 such that
- ou Oa
AV GO + 18 + 1A GO + 1800 ) < Ba(o)
ou 2 2 Oa 2 2
SC eV O +1Au@I” + 1A Z- O + [Aa@®)]” ) - (5.21)

12
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We deduce from the above estimate and (5.20) the following estimate

d
—E9 + BEg + C4]

o
dt 0

t”2_1 <C

Applying Gronwall’s lemma, we obtain

1), G (1), 000, ZENIE, + [ (G120 dr

< Q (lwoll s lurll g, llaol 2, len |l g2) e + € (5.22)
where 8 and C are the positive constants and Q is the monotonic function. O

Corollary 5.4. The semigroup of operators Se(t),t > 0 associated to the problem (1.5) — (1.8)
is dissipative in P2, i.e, it possesses a bounded absorbing set in Po.

This corollary is a straightforward consequence of theorem (5.3).

6 Existence of Global Attractor

Theorem 6.1. The semi-group Se(t), t > 0 defined from ®1 into ®1 and associated to the problem
(1.5) — (1.8) possesses the global attractor Ac which is compact in .

Proof. We have already proved the dissipativity of the semi-group {Se(¢)}:>0 associated to the
problem (1.5) — (1.8). It remains to split the semi-group Se(t) as the sum of two continuous
operators S%(t) and S2(t), such that the solution (u, ) with initial condition belonging to Br, NP2
can be written as following

(u7 a) = (Uv ’r]) + (wv 5)

with
51(0) (10). 510,00, 520 = (w00 50100, 500
and

510 (0.0,0.0) = (i), 52060, 55 0))

O
where S} (e) is the solving operator associated to the linear and perturbed system
v v ov 2 on
—A - — 4+ Av=-A=* 1
A GE ) Ta A ot (6-1)
9%n 8%n on Ov
— —A— - A— —Anp=—— 2
oz Tor Ca 7T o (62)

vloa = n)oa = Av|an =0,

] =u @| =u | =« @| =«
t=0 — U0, ot t=0 = U1, 7M|t=0 = X0, ot t=0 — 1,

13
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SZ(¢) is the solving operator associated to the nonlinear and perturbed system

v Ow ow 2 1913
—A) (= — - - .
e( )(8t2+8t)+8t Aw—Af(u) = A(’% (6.3)
0%¢ 0%¢ 8§ Ow
vl AatQ A A€ = 0 (6.4)
wlon = €loa = AwIaﬂ =0,
7] 7]
wlt=o0 = 8i:|t:0 =0, {|t=0 = £|t:0 =0
and to show that the operator SZ(t) uniformly converges to 0 over all bounded subset of ®;
and S2(t) is regularizing on ®2, when the time tends to infinity.
Multiply (6.1) by (—A)~" 2 and integrate over Q2. We have
v v v 1 0v Ov v on Ov
Getaa) T <( A g 8t) + (‘A”’a) = (aa)
which yields
on Ov
& (A5 1ol ) + 2 S+ 2 G =2 (5. 5. (65)
Multiply (6.2) by a? and integrate over 2. We obtain
(6.6)
9%*n On 9%n 9n on On on\ _ ov 0On
(w’a e a) T\ TP a )T\ e ) T G e
which implies
ov On
2 .
S (150 +no Gl +1vnl) +2ivghr =2 (5.5, 6
We sum (6.5) and (6.7), we find
d
3 o+ 2l 202 4 20 202 + 209 202 =0 (68)
where
E10=€H H + v off? +|| H +||V || +l vl

Multiply (6.1) by (—=A)~'v and integrate over 2, we have
v | Ov 1 v _(On
(Gt G0) + (Car o) +-ann =Gl

14
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which implies

d v
& (2e(Gh0) + ol + 10l ) + 190l < IV LR + 2 S

(6.9)
We multiply (6.2) by 7, integrate over Q2. We obtain
& + —A& + —A@ + (=An,n) =— 9v
atz’n at27n 8t717 77717 - atﬂ? I
which yields
d on on
& (25 + 209 5L 9m) + 190l ) 4 190l < UG + IV (60)
Now summing (6.8), v6(6.9) and 77(6.10) where 76, 77 > 0 are such that
l—v% > 0
2 -7 > 07
2— s —v7C > 0
we have the following estimate
d
S En +CIH H +Cz\| || 1+ Cs[|Vo||* + Cul| V| +C5HV H (6.11)
where
ov 2 2
Eqv = Eio + 6 | 2¢ ik + [[vlZ1 + ol
on on 2
e ((Ghon) + (V5Ln) + 19a?)
For sufficiently small values of 76 and 7 > 0, there exists C' > 0 such that
_ ov 0
(e @1 + ITo@ I + 19 GLOI + 19900l ) < B o)
ov 0
<C (EII O + [Vo@)* + ||V£(t)ll2 + HVU(t)HQ) : (6.12)

Thanks to the above estimate, (6.11) can be rewritten as

d
thll + BE1 + C|| ot || 1 < (6.13)

15
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where 5 and C are the positive constants. Applying Gronwall’s lemma, thanks
to the estimates (6.12), we have

ov _B(t—r
6||*(t)\|2 + @l + In(@®) 17 + || (Ol +/ 15 (D)2 e dr

<@ (1. 50 a(O)%(O))H%) e, (6.14)

So the operator S; (¢) uniformly converges to 0 over all bounded subset of &,
when t tends to infinity.

It remains to prove that S? (¢) is regularizing on ®2, when t tends to infinity.

Multiply (6.3) by %—U: and integrate over 2. We have

(nv 12+ A )+2nv 1742122 = 2(vg§ Vat)
- 2<f'(u)Vu,V%—o;). (6.15)
o

Multiplying (6.4) by _AE and integrating over 2, we get

G (S 1aZe i+ 1ae?) +2a S = -2 (v5.952) . 10)

Summing (6.15) and (6.16), we obtain

d
th12+6HV 1k +2H || +2HA H I\f’(U)VUIIZ, (6.17)

where
E12—6HV H + [ Aw|? +|IV || +HA H + Ag)®.

Multiply (6.3) by w and integrate over 2. We get

(2052 + 2.0) + () + (%) + (0,00 = (o)

which implies

d
<+ 2] Aw|)* < 2€|IV || +*HA I +2|| || +*|IAWII +2[f(w)|?

< 2¢ IIV || +lAw]® +2H H +2[f(w)|?

d
= Bz + | Aw|? 2€IIV || +e pllA || + [ f (u)

= 2. (6.18)

16
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where
Ei3 = 2¢ ( 5 ,Vw) + €|Vl + vl
We multiply (6.4) by —A¢& and integrate over 2. We have

8§ 8§
dt( v ) 4 (A% A¢) + g lAdE 1Al < 1GINAG+ IASIE + IV S IE
N

N

(2(V85 VE) +2(A 52, AL + [|AL] )+2HA§II2 H H +2||A ||

+ 20p\|A H + [l Ag)®

o€

o]
& (295 v 2% 20 + 186 +10el < 151 +ClaZ R

2
Multiplying (1.5) by (—A)_la—w and integrating over €2, we obtain

ot?
2 214 e 2y &y Oy 2(%,%)%@%%‘:)—2()0@)7%)
< 2% HHWHHIIA ey
- /|f e
< s 2Ly coaw+ S22
+ ol + S12L)
S (%12 +aZ2r < claZEP s cldul s Cl@I (619

Now add vs(6.17), v9(6.18), ~v10(6.19) and ~11(6.19) where 77 78 79 and <10 > 0 are such that
Y8 — 279 —y10¢p > O
Y8 —Y9¢p — Y10¢p — 11C" > 0,
Yo—7y11 > 0

We deduce the following estimates

d /
4 B < Cally@)? + sl ) (6.20)
where
Bu = it (2 (V5 50) + Vel + ol
+ (2 (v%vg) +2 (a8 a¢) +1aer)
+ o (1521520, (6:21)

For sufficiently small values of 79 and 710 > 0, there exists C' > 0 such that

(uv I+ lawl? + 1422 4+ g ) < Bull)

(euv I? + aw)? + a2 2 +||A§||)

17
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then, there exists C' and C~* > 0 such that
Ow 0
Cl (w0 520,60 5 0) 15, < Bt (6.22)

The property of f(s) allows to find, owing to (u,a) € Br, N ®2 and the fact that
u € H*(Q) C L*(R), the following estimate

If (w)Vul® = / Bluf? +1)* |Vulda
Q
< O (lulze + 1) [[Vu?
< OVl
and
2
O O
Q
< uf? (Jul? + 1) da
Q
< O (Jult= —|—1)/ |u|?da:
Q
< Olu?
< O Vul.
Thanks to the estimates (5.2), the two above estimates can be written as following
Jda Oa _
1 @9l <@ (o), 5 ©,a0). 52O, ) e + € (6.23)
Py Oa Oa _pt
IF@)II” < @ ( 1(u(0), 57(0), a(0), Z-(0))lla, | e™™ +C (6.24)

where 8 and C are the positive constants and @Q is the monotonic function. Inserting (6.23) and
(6.24) into (6.20), we have

G5 < (100, 5 0,00, Gr ) e, ) 7 4. (6.25)
Integrating (6.25) from 0 to ¢ € [0, T] and owing to (6.22), we get
I, 520,60, 503 < © [ (@160, 50,00, 5 0l ) e+ C) ar
< (1)@ (). 3o, Z0)ls, ) + 1
< (1420 @ (o). 3t ). B2 op s ) +
< (1 T 1+15t> Q <||(u(0), %?,a(()), %(O)Wm) +Ct
< (14 i +1) @ (10600, 30, 52 0 )

< (gt 5) @ (1), a0, 5 0Dl )
< @+ 0490+ Q (), 500, 50D, )
< (47 Q (). 510, a0). G5 ODls, ). (620
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The estimate (6.26) allows to assert that the operator S.(t) is regularizing in ®;. Then there
exists the global attractor.

7 Conclusion

The works contained in this article relative dynamic system, are very important to explain the
processes of phase transition phenomena. Since the solution of the system exists and is unique

and the system is dissipative, then the existence of the global attractor associated to the problem
(1.5)-(1.8) is proven.
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