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Abstract 
 

In this paper, the stability of the equilibrium points of the two dimensional Zeeman Heartbeat Model is 
investigated with time delay in cardiac muscle fiber or stimulator. The formulation of the heartbeat  
model is explained in the first part. Then, the stability conditions for the equilibrium points of the        
system are derived. Finally, some examples are given to illustrate the results of the study. The overall 
objective of this study is to investigate the effects of time delays on the dynamics of the Zeeman 
Heartbeat Model. 
 

 
Keywords: Zeeman Heartbeat model; time delay; stability; equilibrium. 
 
2010 AMS classification: 97M60, 37D35. 
 

1 Introduction 
 
The use of mathematical models is becoming increasingly popular in various fields of science. Social 
sciences, engineering and medicine are just a couple of these areas which mathematical modeling studies 
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form a non-negligible part of the studies. In the recent years, models consisting of systems of differential 
equations have been use to investigate many phenomena such as bacterial resistance [1], dengue disease [2] 
and tobacco control [3]. The heartbeat models of the British mathematician Sir Erik Christopher Zeeman are 
further examples of modeling studies in mathematical biology [4,5]. 
  

The heart is about the size of a fist. It acts as a pump in the body to control the circulation of blood. It 
consists of two halves which have different roles for pumping the blood and the heart beats about 3 billion 
times through the life of a human to regulate the circulation. The oxygen-poor blood, which is dark-red in 
color, is collected in the right side of the heart, where it is then sent to the lungs. The blood is oxygenated in 
the lungs. The oxygen-rich blood, which is collected in the left side of the heart, is then sent to the body.   
The oxygen is used by the organs and then sent back to the heart to complete the cycle. The mechanism of 
the heart consists of contractions and relaxing. These activities of the heart muscles are controlled by 
electrical impulses. Systems of ordinary differential equations have been presented by E.C. Zeeman in his 
studies in 1972 and 1977 to explain the activity of the heart under the control of this electrochemical event 
[4,5,6].  

  

E. C. Zeeman has used two different deterministic equation systems to model the behavior of the heart. 
Similar deterministic models are widely used in biochemistry, biology and other fields to analyze various 
dynamics of the event under investigation. However, deterministic differential equation systems are unable 
to accurately model some real life events. Hence, the use of random effects, stochastic noise terms and time 
delays are some of the methods frequently used to improve the accuracy of these models. By introducing 
time delays in the equation systems, the past states of the system are also considered in the analysis and a 
more complex investigation of the system can be done [7]. Time delays have been used in predator-prey 
models [8], epidemic models [9] and also to model population dynamics [10,11,12,13,14,15,16,17,18,19,20, 
21]. Additional recent studies on time delays and heartbeat models can also be found in the literature [22,23, 
24,25,26,27]. 

  

In this study, delay differential equation systems will be obtained by using E.C. Zeeman’s model. Time 
delays will be used in Zeeman’s system to model the dynamic behavior of heartbeat from a different 
perspective. The equation system under time delays will be analyzed for its equilibrium points and the 
stability of the equilibria. The study proposes a perspective to heartbeat models and the examples in our 
study can be used to analyze similar equation systems under time delays. The paper is organized as follows: 
Zeeman’s two dimensional heartbeat model is introduced in section 2 and delayed models are given in 
section 3 along with some results.  

 

2 Zeeman’s Heartbeat Model 

 
E.C. Zeeman’s heartbeat model consisting of two differential equations is given as follows [4] 

 

���

��
= −

1

�
(��(�)� − ���(t)+ ��(�)), 

 (1) 

���

��
= ��(�)− ��. 

 

The variables of the system are �� and �� which denote the muscle fiber length and the stimulus that controls 
muscle fiber contraction at any time �, respectively. Parameters of system (1) have been acquired from the 
referred study [4] and are listed in Table 1. 
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Table 1. Values and descriptions of the parameters 
 

Parameter Description Value 
� A constant dependent on the timescale 0.2 
� Overall tension in the heart 0.5 
�� Typical relaxed fiber length 0 or 0.41 

 
Initial values of the variables are given as [4]: 
 

��(0)= 0.5;��(0) = 0. 
 

3 Two Dimensional Zeeman Model with Time Delays 
 
3.1 First case 
 
If the time delay, denoted by �, is introduced in the second term of the first equation in (1), we obtain: 
 

���

��
= −

1

�
(��(�)� − ���(t)+ ��(� − �)), 

 (2) 
���

��
= ��(�)− ��. 

 

Let �� ≠ 0. Assume � ����
,���

� be a positive equilibrium point of (2). We linearize the system (2) at the 

equilibrium point �  as follows: 
 

Assume �(�) = ��(�)− ���
,�(�)= ��(�)− ���

. By using the change of variables 

 
��

��
=

���

��
,

��

��
=

���

��
 

 
and by choosing the functions � and � as 
 

�(��,��)= −
1

�
(��(�)� − ���(t)+ ��(� − �)) 

 
�(��,��)= (��(t)− ��), 

 

we can linearize the system (2) at the point � ����
,���

� as 

 
��

��
=

��

���

(� ∗)�(�)+
��

���

(� ∗)�(� − �) 

 (3) 
��

��
=

��

���

(� ∗)�(�)+
��

���

(� ∗)�(�), 

 

which becomes 
 

��

��
= −

1

�
�3���

� − ���(�)+ �−
1

�
��(� − �) 

 (4) 
��

��
= �(�). 
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The characteristic equation of the system (4) is 
 

Δ(�,�) = det���− �� − Σ���
� ��������, 

 
where  
 

�� = �
−

�

�
���

� +
�

�
0

1 0
� and �� = �

0 − 1/�
0 0

�. Hence, 

 

Δ(�,�) = det� �
� 0
0 �

� − �−
3

�
���

� +
�

�
0

1 0

� − �
0 − 1/ε
0 0

� e���� = det�� +
3

�
���

� −
�

�

1

ε
e���

− 1 �

�. 

P(�) = �� + �
3

�
���

� −
�

�
�� +

1

ε
e��� = 0 

(5) 
 
 

 

⇒ P(�) = �� + �� + �e���. (6) 
 
Let, 

� =
3

�
���

� −
�

�
,� =

1

ε
. 

 
The characteristic equation (6) for � = 0 is 
 

�� + �� + � = 0 (7) 
 
and the roots of (8) are 
 

��,� =
− � ± √�� − 4�

2
. (8) 

 

(H1) For � = 0, �� = − �√� and �� = �√�. Then, 
 

��,� = ± �√� 
 

Thus, � ����
���

� becomes a steady center point for � = 0. 

 

(H2) For � < 0, the eigenvalues �� =
���������

�
 and �� =

���������

�
 are found. Hence for � = 0, once 

again ��,� = ± iβ,β ≠ 0 is obtained. 
 
Thus, if we generalize these cases for � ∈ �; the equilibrium point �  becomes a steady center point for 
� ∈ �, since ��,� = ± iβ,β ≠ 0. 
 
All roots of Eq. (7) have negative real parts, which is true if 
 
(H3) � >  0 
 
(H4) � >  0 
 
Assume that � ≠ 0 in the characteristic equation (6). Let � = ���,�� > 0 be a root of the characteristic 
equation (6). Writing the values of � in the equation (6), 



 
 
 

Oral et al.; JAMCS, 26(6): 1-15, 2018; Article no.JAMCS.35599 
 
 
 

5 
 
 

���� = ������ = cos(���)− ����(���) 
 
can be obtained. Thus,  
 

(���)� + ���� + �[cos(���)− ����(���)] = 0. 
 
From here, we find that 
 

− �� � + ���� + c cos(���)− �����(���)= 0 (9) 
 
The real and imaginary parts of the equation (9) can be handled separately as 
 

− �� � + c cos(���)= 0 (10) 
 
and 
 

��� − c���(���) = 0. (11) 
 

After appropriate arrangements, we find that 
 

cos(���) =
�� �

�
,���(���) =

���

�
. (12) 

 
Square both sides of equations (12) respectively, then we get 
 

�� � + ���� � − �� = 0 (13) 
 
The roots of equation (13) are 
 

�� �± =
− �� ± √�� + 4��

2
 (14) 

     
Thus equation (14) has one positive and one negative roots. Now, we are going to determine the values  ��  
as follows: 
 
Dividing the equations of (12) yields  
 

tan(����)=
���(���)

cos(���)
=

���

�

�� �

�

=
�

��
 

 

(15) 
 

tan�� of both sides in the equation (15) yields 
 

���� = tan�� �
a

��
� + 2kπ,k = 0,1,2 … 

 
(16) 

�� =
1

��
tan�� �

a

��
� +

2kπ

��
  � = 0,1,2 …. (17) 

 
Example: Considering the system (2) for the parameters � = 0.2,� = 0.5,�� = 0.41, we find that the 
positive equilibrium point of the system (2) is (0.41,0.136079). For � = 0, the eigenvalues of the jacobian 
matrix of the system (2) at the point (0.41,0.136079) are  {− 0.0107 + 2.2360�, − 0.0107 − 2.2360�}. 
Noticing that the real parts of the complex conjugate eigenvalues are negative, (0.41,0.136079) becomes a 
stable equilibrium point. 
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For � = 0, we find that � = 0.0215. The values of ���
� and � can not be determined by using �. 

 

3.2 Second case 
 
If the time delay is introduced in the first term of the second equation in (1), we obtain: 
 

���

��
= −

1

�
(��(t)� − ���(t)+ ��(�)) 

 (18) 
���

��
= ��(� − �)− ��. 

 
Here, let �� ≠ 0. 
 

Assume � ����
,���

� be a positive equilibrium point of (18). We linearize the system (18) at the equilibrium 

point �  as follows [28]: Assume �(�)= ��(�)− ���
,�(�) = ��(�)− ���

, then 
��

��
=

���

��
 and 

��

��
=

���

��
. 

Assume we choose 
 

�(��,��)= −
1

�
(��(�)� − ���(t)+ ��(�)) 

 
and  
 

�(��,��)= ��(� − �)− ��. 
 

Thus, by linearizing the system (18) at the point � ����
,���

�: 

 
��

��
=

��

���

(� ∗)�(�)+
��

���

(� ∗)�(�) 

 (19) 
��

��
=

��

���

(� ∗)�(� − �)+
��

���

(� ∗)�(�), 

 
which after necessary arrangements becomes the system 
 

��

��
= −

1

�
�3���

� − ���(�)+ �−
1

�
��(�) 

 (20) 
��

��
= �(� − �). 

 
The characteristic equation of the system (20) is 
 

Δ(�,�) = det���− �� − Σ���
� ��������, 

 
where  
 

�� = �
−

�

�
���

� +
�

�
− 1/�

0 0
� and �� = �

0 0
1 0

�. Hence, 
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Δ(�,�)= det��
� 0
0 �

� − �−
3

�
���

� +
�

�
− 1/�

0 0

� − �
0 0
1 0

� e���� = det�
� +

3

�
���

� −
�

�

1

�
− e��� �

�. 

 

P(�) = �� + �
3

�
���

� −
�

�
�� +

1

�
e��� = 0 

 
(21) 

⇒ P(�) = �� + �� + �e��� = 0. (22) 
 
where we choose 
 

� =
3

�
���

� −
�

�
, � =

1

�
. 

 
The equation (6) was obtained in a manner similar to the above operations. 
 
The characteristic equation (22) for � = 0 is 
 

�� + �� + c = 0 (23) 
 
and the roots of (23) are 
 

��,� =
− � ± √�� − 4c

2
. (24) 

 
All roots of Eq. (23) have negative real parts, if 
 
(H5) � >  0 
 
(H6) � >  0 
 
the equilibrium point �  becomes locally asymptotically stable when both conditions hold. 
 
We want to determine if the real part of some root increases to reach zero and eventually becomes positive 
as � varies. 
 
Assume � ≠ 0 in the characteristic equation (22). Let � = ���,�� > 0 be a root of the characteristic equation 
(22). For 
 

���� = ������ = cos(���)− ����(���), 
 
If � is written in (22), we obtain 
 

(���)� + ���� + [cos(���)− ����(���)]� = 0. 
 
Hence 
 

− �� � + ���� + cos(���)c − ����(���)� = 0 (25) 
 
The real and imaginary parts of the equation (25) can be handled separately as 
 

− �� � + cos(���)� = 0 ⇒ cos(���)=
�� �

�
 (26) 
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and 
 

��� − ���(���)c = 0 ⇒ ���(���)=
���

�
. (27) 

 
Thus, 
 

cos(���) =
�� �

�
 

 
(28) 

���(���)=
���

�
. (29) 

 
By taking the square of both sides in (28) and (29) and adding these equations side to side; 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ �� ��

��
= cos� ���

 ���� �

��
= sin� ���

(�� ��
+  ���� �)

1

��
= 1

� 

 
�� + ��� − �� = 0 (30) 

 
is obtained. From here we get 
 

��,� =
− �� ± √a� + 4��

2
 

 

��±
� =

− �� ± √a� + 4��

2
. (31) 

 
(H7) For any a value, ��±

� has two complex conjugate roots, two of which are real. 
 
Let’s determine the values of ��  as below. If the equations (28)-(29) 
 

cos(���) =
�� �

�
 

 

���(���)=
���

�
 

 
are divided side by side; 
 

tan(����)=
�

��
. (32) 

 
The compound of tan��  with both sides in the equation (32) yields 
 

���� = tan�� �
�

��
� + 2��, � = 0,1,2,3 … . (33) 

 
The equation (33) is: 
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�� =
1

��
tan�� �

�

��
� +

2��

�� �
,     � = 0,1,2,3 …    (34) 

  

��
± =

1

��±

tan�� �
�

��
� +

2��

��±
� ,     � = 0,1,2,3 ….        (35) 

 
The above discussion can be summarized by the following lemma. The proof of this lemma can also be 
found in [29]. 
 
Lemma 1:  
 

i) If (H5) and (H6) are satisfied, then the equation (22), with � = ��
�, only has imaginary roots ± iw� . 

ii) If (H5) and (H6) hold and � = ��
�, then the equation (22) only has the imaginary root couple ± iw� .   

 
Let’s introduce the following theorem to determine the stability of the equation with time delay. 
 
Theorem 1: If the following conditions are satisfied, the equilibrium point � ∗ is asymptotically for all � ≥
0. 
 

i) All of the real parts of the roots of the equation ∆(�,0)= 0 are negative. 

ii) For all real (��) and � ≥ 0;   ∆(���,�)≠ 0,i = √− 1. 
 
Now as a result, we obtain the following theorem. 
 
Theorem 2: If the conditions hold for � < 0 ,� > 0, the equilibrium point �  of the equation (22) is 
asymptotically stable for all � ≥ 0. 
 
For the proof of the contradictory conditions; 
 

�

��
��(��

�(��
�)) > 0 and 

�

��
��(��

�(��
�))< 0 

 
The derivative of the both sides of the equation (22) which depends on �: 
 

�� + �� + �e��� = 0 
 

⇒ 2�
��

��
+ �

��

��
− ce��� ��

��

��
+ �� = 0 

 

⇒ �2� + a − ce�����
��

��
− c�e��� = 0 

 

��

��
 =

��e���

2� + � − ce����
. 

 
(36) 

Since �
 ��

��
�

��

=
�

��

��

, 

 

��

��
 =

2� + � − ce����

��e���
. (37) 

  

�
 ��

��
�

��

=
�����������

������ =
����

������ −
τ

�
 .  (38) 



 
 
 

Oral et al.; JAMCS, 26(6): 1-15, 2018; Article no.JAMCS.35599 
 
 
 

10 
 
 

�� + �� + �e��� = 0 from equation, e��� =
������

�
   

 
(39) 

Substitution of equation (39) into equation (38), yields 
 

�
 ��

��
�

��

=
2� + � − ce����

��e���
=

− a − 2�

�(�� + ��)
−

τ

�
 

 

sign �
�

��
(���)� = sign ���(�

 ��

��
�

��

)�. 

 

sign ����(���)�

��
�
�����

� = sign ��� ���
 ��

��
�

��

��
�����

�. 

 
Hence, the expression 
 

sign ����(���)�

��
�
�����

� = sign ���
− a − 2�

�(�� + ��)
−

τ

�
 ��

�����

� (40) 

 
can be calculated as below. Using �� = − 1, the calculation yields: 
 

sign ����(���)�

��
�
�����

� = ���� ��� ���
− a − 2�

�(�� + ��)
 ��

�����

� − �� ��
τ

�
 ��

�����
� 

 

Now, we evaluate the following to compute  sign ����(���)�

��
�
�����

�: 

 

1. The value of �� ���
�����

�(�����)
 ��

�����
� is as follows: 

 

�� �
− a − 2���

���(− �� � + ����)
� = �� �

− a

���(− �� � + ����)
� + �� �

− 2���

���(− �� � + ����)
� 

 
But, 
 

�� �
− 2���

���(− �� � + ����)
� = �� �

− 2���

− ���(�� � + ����)
� =  �� �

2

(�� � − ����)

(�� � + ����)

(�� � + ����)
� = �� �

2�� � + 2����

(�� � + ���� �)
�

=
2�� �

(�� � + ���� �)
 

 

�� �
��

��� (��� ������)
� = �� �

�

��� (�� ������)
�= �� �

�

���(�� ������)

(�� ������ )

(�� ������ )
� =  �� �

��� �������

���(�� ������ �)
�=

��

(�� ������ �)
 

 
Therefore, 
 

 �� ���
− a − 2�

�(�� + ��)
 ��

�����

� =
2�� � + ��

(�� � + ���� �)
 (41) 

 

2. The value of   �� ��
τ

�
 ��

�����
  is as follows: 
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�� ��
τ

�
 ��

�����
= �� �

τ

�����

− ���

− ���
� = �� �

− ����

�� �
� = 0 (42) 

 
By substituting equations (41) and (42) into equation (40), we arrive at 
 

sign ����(���)�

��
�
�����

� = ���� �
2�� � + ��

(�� � + ���� �)
� (43) 

 
Theorem 3: Let � = �±  be defined as in (35). If the conditions hold; 
 

�� + �� + �e��� = 0, 
 
then the equilibrium point �  is unstable for a positive constant � 
 

��[0,��
�] ∪ [��

�,��
�] ∪ … ∪ [����

� ,��] 
 

��[��
�,��

�] ∪ [��
�,��

�,] ∪ … ∪ [����
� ,����

� ]. 
 
Proof: When the following conditions hold for the theorem, then only the following contradictory conditions 
need to be satisfied. By 
 

�

��
(�� �)�|���� > 0 and 

�(�� �)

��
�|����� � > 0, 

 
�

��
(�� �)�|���� > 0 and  

�(�� �)

��
�|����� � < 0, 

 

��±
� =

− �� ± √a� + 4��

2
 

 
and 
 

��
± =

1

��±

tan�� �
�

��
� +

2��

��±
� ,     � = 0,1,2,3 ….        

 
from the conditions of Theorem 3, 
 

a� + 4�� > 0 
 

�a� + 4�� > 0 
 

sign ��a� + 4��)� > 0. 

 
Thus,  
 

sign �
�

��
(�� �)�|����� �,� = ��� > 0. 

 
Now, 
 

���� �
�

��
(�� �)�|����� � = ���� �

2�� � + ��

(�� � + ���� �)
� = ���� ��a� + 4��)� > 0. 
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Which implies that 

 

sign �− �a� + 4��)� < 0. 

 

Therefore, 

 

sign �
�

��
(�� �)�|����� �,� = ��� < 0. 

 

Hence, the contradictory conditions are satisfied and the proof is completed. 

 

Example: If the system (18) is considered for the parameters � = 0.2,� = 0.5,�� = 0.41, the positive 
equilibrium point of system (18) becomes (0.41,0.136079). For � = 0, the eigenvalues of the Jacobian 
matrix of system (18) at the point (0.41,0.136079) are obtained as  {− 0.7482 + 2.1072�, − 0.7482 −
2.1072�}. Noticing that the real parts of the complex conjugate eigenvalues are negative, (0.41,0.136079) 
becomes a stable equilibrium point. 

 

Since � = 0, we find that 

 

� = 0.0215, 
 

� = 5. 
 

If the values of � and � are put into their places in (31), 
 

���
� = 4.9988, 

 

���
� = − 5.0002. 

 

From the square-root of ���
�, 

 

��� = √4.9988 = 2.2357. 
 

If the values of �,� and ��� are put into their places in (33), then the value of the first delay term becomes 
 

��
� = 0.011, 

 

��
� = 1.2581. 

 

The critical value of time delay is � = ��
� = 0.0215 . When � < 0.011 , the equilibrium point 

(0.41,0.136079) becomes asymptotically stable; when � = 0.0215, the stability at (0.41,0.136079) is lost 
and when � > 0.011, the equilibrium point (0.41,0.136079) becomes unstable. 
 

4 Conclusion 
 
E. C. Zeeman’s heartbeat model has been analyzed under time delays in two different terms of the model. 
The equilibrium points of these models with time delays have been investigated along with their stabilities. 
Examples have also been given for the time delays, showing the critical values of the time delays for the 
stability of the equilibrium points. The phase portraits of the model for under different time delays are given 
in Figs. 1 and 2 to visualize the behavior of the solution curves for the variables ��(�) and ��(�). Similar 
mathematical models can also be investigated with time delays using this approach.  
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Fig. 1. Solution curve with  ��
� = �.���. 

 

 
 

Fig. 2. Solution curve with ��
� = �.����. 
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