Effect of Surfactant Concentration on Aqueous LiBr Solution Absorption Rate

F. Elsafty, Ahmed (2013) Effect of Surfactant Concentration on Aqueous LiBr Solution Absorption Rate. Open Journal of Physical Chemistry, 03 (01). pp. 1-6. ISSN 2162-1969

[thumbnail of OJPC_2013021915223387.pdf] Text
OJPC_2013021915223387.pdf - Published Version

Download (368kB)

Abstract

It is well known that small amounts of surfactants, such as 1-Octanol, in the aqueous solution can increase the absorption rate significantly. In this paper, experimental data were obtained for absorption of water vapour into an aqueous LiBr solution with different concentrations of 1-Octanol. An experimental rig was specifically designed and developed in this work in order to investigate the effect of surfactant (1-Octanol) on the enhancement of the heat and mass transfer in the absorption process, in addition to, the investigation of the impact of the use of magnetic stirrer inside the absorber. The experimental rig for this study was based on the refrigeration mode of the intermittent vapour absorption system. In order to study the heat and mass transfer in water-lithium bromide vapour absorption air conditioning systems, it was necessary to monitor the concentration of the solution continuously. As a consequence, two procedures for obtaining the LiBr solution concentration were used. The first method was based on the measurement of the density and temperature of the solution, while the second was based on its electrolyte conductivity and the temperature. The experimental results showed that the surfactant concentration has a significant effect on the absorption rate; this is called the Marangoni instability. It has been concluded that, in order to clarify the absorption enhancement phenomenon, it is necessary to understand the physicochemical aspects of the absorption process and the effect of surfactants on the enhancement of such process. Additionally, it has been concluded that new approaches are needed to explain the observed behaviour.

Item Type: Article
Subjects: Bengali Archive > Chemical Science
Depositing User: Unnamed user with email support@bengaliarchive.com
Date Deposited: 20 May 2023 06:26
Last Modified: 18 Jun 2024 07:37
URI: http://science.archiveopenbook.com/id/eprint/1202

Actions (login required)

View Item
View Item