Proenca, Audrey Menegaz and Rang, Camilla Ulla and Qiu, Andrew and Shi, Chao and Chao, Lin and Kaeberlein, Matt (2019) Cell aging preserves cellular immortality in the presence of lethal levels of damage. PLOS Biology, 17 (5). e3000266. ISSN 1545-7885
file (1).pdf - Published Version
Download (2MB)
Abstract
Cellular aging, a progressive functional decline driven by damage accumulation, often culminates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-lasting immortality, as prominently exemplified by stem cells. Here, we show that Escherichia coli cell lineages exhibit comparable patterns of mortality and immortality. Through single-cell microscopy and microfluidic techniques, we find that these patterns are explained by the dynamics of damage accumulation and asymmetric partitioning between daughter cells. At low damage accumulation rates, both aging and rejuvenating lineages retain immortality by reaching their respective states of physiological equilibrium. We show that both asymmetry and equilibrium are present in repair mutants lacking certain repair chaperones, suggesting that intact repair capacity is not essential for immortal proliferation. We show that this growth equilibrium, however, is displaced by extrinsic damage in a dosage-dependent response. Moreover, we demonstrate that aging lineages become mortal when damage accumulation rates surpass a threshold, whereas rejuvenating lineages within the same population remain immortal. Thus, the processes of damage accumulation and partitioning through asymmetric cell division are essential in the determination of proliferative mortality and immortality in bacterial populations. This study provides further evidence for the characterization of cellular aging as a general process, affecting prokaryotes and eukaryotes alike and according to similar evolutionary constraints.
Item Type: | Article |
---|---|
Subjects: | Bengali Archive > Biological Science |
Depositing User: | Unnamed user with email support@bengaliarchive.com |
Date Deposited: | 27 Jan 2023 07:52 |
Last Modified: | 02 May 2024 06:19 |
URI: | http://science.archiveopenbook.com/id/eprint/13 |